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Liquid crystalline order in fluids with hydrogen bonds 
by BORIS A. VEYTSMANJ- 

Polymer Science Program, 320 Steidle Building, 
The Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A. 

(Received I April 1994; accepted I6 June 1994) 

A mean-field theory of liquid crystalline ordering in hydrogen bonded liquids is proposed. It is 
shown that hydrogen bonds may cause liquid crystalline ordering. For a simple example of 
spherical molecules containing hydrogen bonding functional groups the existence of a nematic 
phase is predicted and the thermodynamics of the phase transition is discussed. 

1. Introduction 
It is well known [l]  that liquid crystalline ordering is 

caused by the microscopic anisotropy of molecular 
interactions. The most common examples are. steric 
repulsion and dipole-dipole interaction. They cause liquid 
crystalline mesophases in liquids with molecules that have 
highly non-spherical shapes and large dipole (or higher 
order) moments. There are, however, other possible 
candidates for the role of a driving force for the liquid 
crystalline ordering. One of them is the hydrogen bonding. 
This interaction often leads to the formation of interesting 
structures, the famous complex structure of liquid water 
being an example. However neither water nor other liquids 
consisting of small hydrogen bonded molecules have 
liquid crystalline mesophases. One reason may be the 
complex geometry of the hydrogen bonded aggregates in 
most of liquids studied to date, which is unlikely to 
withstand a long range order. One is tempted to suppose 
that a simpler structure of aggregates may lead to the liquid 
crystalline ordering. The role of the geometry of hydrogen 
bonded aggregates in the liquid crystalline ordering was 
qualitatively discussed long ago [2]. It is known that 
phenolic compounds are not mesomorphic, but substitut- 
ing of a phenolic hydrogen by an alkyl group may result 
in mesomorphic liquid. One of the reasons is that hydrogen 
bonds in phenols encourage a non-linear molecular 
arrangement, which prevents the liquid crystalline order- 
ing. On the other hand, when aggregates have a simple 
geometry, the hydrogen bonds increase the tendency to the 
liquid crystalline ordering. For example, hydrogen bonded 
4-n-alkoxybenzoic acids have liquid crystalline phases, 
but the corresponding alkyl esters have not [2]. In 1989 
Kato and Frkchet found [3,4] that intermolecular hydro- 
gen bonds between pyridine and carbolic acid functional 

t On leave from: Physics-Chemical Institute, 86 
Chernomorskaya Doroga, Odessa, 270080, Ukraine. 

groups can give rise to mesogenic structures. Since then 
a number of systems have been observed [S-151 where the 
hydrogen bonds supposedly play the major part in the 
mesophase formation. This effect may be important for 
liquid crystal science and technology. Indeed it is possible 
to synthesize molecules with a given number and 
distribution of the hydrogen bonding functional groups. 
Thus, one could design, in principle, fluids having a 
desired'phase diagram. Moreover, the number of hydrogen 
bonds formed is sensitive to temperature, pH and other 
factors. Therefore, the phase diagram might be both 
interesting and easily controllable. 

However up to now there is no theory of the hydrogen 
bonded liquid crystals that would predict their mesogenic 
properties basing on the microscopic parameters (shape, 
dipole moments, equilibrium constants of hydrogen 
bonds, etc.). An approach to such theory is discussed in the 
present paper. 

In the next section we will introduce the general way of 
extending the mean-field theory of liquid crystals to 
account for the contribution of hydrogen bonds. The 
results of the application of this theory to various systems 
depend on the details of the molecular structure and 
interactions. They will be addressed in the subsequent 
publications. In this paper the general considerations will 
be illustrated in the third section by a simple example of 
isotropic molecules with highly anisotropic H-bonding. 
Besides illustrative purposes, this example is interesting 
because it predicts that hydrogen bonds alone may cause 
liquid crystalline ordering in otherwise isotropic liquids. 

2. General theory 
In the mean-field approximation the system's partition 

function can be factorized and the free energy can be 
written as the sum 
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596 B. A. Veytsman 

where Sorient is the orientational entropy of molecules, fphys 
includes ideal gas part and ‘physical’ interactions [ 161 (i.e. 
all interactions but hydrogen bonding), and f~ is the 
contribution of the network of hydrogen bonds. Equation 
( I )  differs from the mean-field equations for the non- 
bonded crystals [ 11 by the extra term f ~ .  

Let p be a unit vector defining orientation of a chosen 
molecule. Let g( p) be the orientation distribution function, 
so the probability that a molecule has an orientation in a 
spherical angle dQ is g(p)dQ. Therefore 

g(p)dQ = I .  (2) I 
In the mean field approximation we express the right 

hand side of equation (1) in terms of the orientation 
distribution function. Minimizing then equation (1) with 
respect to g(p) we obtain both free energy and the 
equilibrium orientation distribution. 

The orientation entropy of a molecule is [ l ,  171 

where k is the Boltzmann constant. The dependence of the 
‘physical’ part of the free energy can be obtained for dilute 
solutions in the framework of the Onsager’s virial 
expansion [ I ,  171. There are generalizations of the 
Onsager approach allowing one to estimate fphys for more 
concentrated solutions [ 181. 

Let us discuss now the contribution of hydrogen bonds 
fH. Recently [19-221 a mean-field theory of H-bonded 
liquids was proposed. Its results are consistent with those 
of association models [16], but are more easily extended 
to the complicated case of a developed network. This 
theory displays rather unexpected success in predicting 
phase diagrams and thermodynamic properties of various 
fluids [22-241, and we will extend this approach to 
orientationally ordered liquids. It was shown in [ 19-22] 
that f~ can be expressed in terms of equilibrium constants 
describing H-bond formation, which are in turn, pro- 
portional to the probabilities that photon-donor and 
proton-acceptor groups are neighbours. For anisotropic 
liquids we must introduce the orientation dependence of 
these probabilities, which can be easily done in the mean 
field approximation. 

Let K12 be the equilibrium constant describing the 
hydrogen bond formation between two neighbouring 
molecules 1 and 2 with orientation vectors p1 and p2, and 
t be the unit vector directed from the centre of the molecule 
1 to the centre of the molecule 2. Let R(pl, p2, t) be the 
probability of hydrogen bond formation between them at 
the given orientation (pl, p2, t). If g\;)(pl, p2, t) is the 
pairwise correlation function (the probability that a 

molecule has orientation pl if its neighbour has an 
orientation p2) then K12 is proportional to 

I d a 1  dW2dQR(p1, p2, t )g%)(~ l~  P2. th (3) 

where dQ1, dQ2 and dQt are the spherical angles associated 
with the vectors PI, p2 and t. 

Now we will make some assumptions concerning 
R(pl, p2, t) and g\y(pl, p2, t). First, in the spirit of the mean 
field theory, we will substitute the painuise correlation 
function g(:Z)(pl, p2, t) by the product of unary functions 

(4) g“(p1, p2. t) = gl(Pl)g2(P2)h12(f). 

The function R(p1, p2, t) describes the orientation 
dependence of the hydrogen bond. It is particularly simple 
if the H-bond is strongly orientation dependent, and forms 
only when the difference between the molecular orienta- 
tions pl, p2 and the vector t does not exceed some small 
spherical angle o (‘stiff ’ bond). This is indeed the case 
for the carboxylic acid-like bonds (251. If o @ 4 n ,  then 

( 5 )  

where 6 is the Dirac 6-function. Therefore the constant of 
hydrogen bond formation is 

WPl, p27 t) = w26(p, - tP ( t  - p2), 

K12 = X;1(47C)2~gl(t)g*(t)h12(t) dQ, (6)  

where the coefficient is chosen in such a way that in the 
isotropic state the equilibrium constant of the bond 
formation equals its ‘isotropic’ value K [ Y .  

The functions gl( p) and g2(p) describe the anisotropy of 
the molecular orientation, while the function hI2(t) 
describes anisotropy of their relative positions (for 
example, in smectics). For the simplest case of nematics 
hl2(f) = const., and equation (6) gives 

Kl2 = K~?4z/gl(Pk2(P)dQ, (7) 

These general formulae will be illustrated by the 
following simple example. 

3. Simple model 
Let us consider non-polar roughly spherical molecules 

with a proton-donor group at the ‘North pole’ and a 
proton-acceptor group at the ‘South pole’. These 
molecules will form rigid linear aggregates. At high 
temperatures the degree of hydrogen bonding is small. The 
aggregates are rare and short. The liquid is isotropic. As 
the temperature decreases, the number of aggregates and 
their length grows. Therefore at some temperature the 
transition to the ordered phase may occur. This transition 
is similar to the isotropic liquid-nematic transition in the 
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Order in fluids with hydrogen bonds 597 

solution of rigid rods. The important feature of hydrogen 
bonded ‘rods’ is that their length is not constant, but 
depends on the temperature and environment. 

The orientation entropy contribution to the free energy 
is [ l ,  171 

- Tsmient = nkT g(p) In [47rg(p)l ds2, (8) 

where n is the number of molecules per unit volume, T is 
the temperature, k is Boltzmann’s constant, and g(p) is the 
introduced above orientation distribution function. Now 
we shall use the simplifying assumption that the molecules 
are roughly spherical and non-polar. Thus the ‘physical’ 
part of their interaction does not depend on their 
orientation. So we can leave&,, as it is: it will not affect 
our calculations. 

I 

3.  I. Isotropic phase 
To obtain j b  let us first recall the results for isotropic 

liquids [19]. For this case (one proton-donor and one 
proton-acceptor group per molecule), they are 

f~ = kTn[v + 2 In (1 - v) ] ,  (9) 

where v is the fraction of H-bonds per unit volume. The 
value of v is determined by the equation 

(10) v = (1 - v)*K, 

where K is the equilibrium constant describing H-bond 
formation. 

It is easy to see that these results hold for ordered 
liquids, but now the equilibrium constant Kdepends on the 
relative orientation of the bonded molecules: 

K = K14~  g2( p) dl2, (1 1 )  I 
where KI is the equilibrium constant for the isotropic 
liquid. 

Let us recall that the equilibrium constant KI is 
temperature dependent: 

Eo s o  
kT k 

Kl = exp ( - - + -), 
where EO and SO are energetic and entropic contributions 
to the free energy of H-bond formation (usually both are 
negative). At high temperatures KI is small, and the 
isotropic liquid with g = 1/(47r) has the minimal free 
energy. At low temperatures Kl is large, and the state with 
broken orientation symmetry (nematic) has the minimal 
free energy. 

Let us explore this in detail. To check whether the 
isotropic state is stable let us consider a small deviation 

from it 

where a/ are small coefficients, PI are Legendre polynomi- 
als, 0 is the angle between the vector p and the orientation 
axis. From equations (8) we have for small a/ 

and 

If the constant K depends on some parameter t then 
equation (10) gives 

dv 
dt 1 + v  dt * 

v( 1 - v)  d In K( t )  
(16) - 

Using equations (14)-(17) we can easily obtain the 
following expansion for the free energy 

where f~ does not depend on at. It is evident from equation 
(17) that the isotropic phase becomes unstable at v 2 3, i.e. 
at KI 2 2. 

This analysis checks the local stability of the isotropic 
phase. It does not answer the question, whether the 
ordering is a first order phase transition or a second order 
phase transition. Therefore we will explore anisotropic 
phase in more detail. 

3.2. Anisotropic phase. 
The direct minimization of the free energy using 

arbitrary g(p) is usually a very hard task. After Onsager 
[ 171 one usually picks a reasonable trial function depend- 
ing on some adjustable parameters that are chosen to 
minimize the free energy. Evidently the trial function must 
reflect the symmetry of the given phase. If we assume that 
the ordered phase has the symmetry Dmhr that is typical for 
nematics, the reasonable trial function is the Onsager 
function 

C 
cosh (c cos O ) ,  

g(p) = 471 sinh c 

where c = const is a free parameter. However, a numerical 
study reveals that the free energy with such trial function 
has no minima other than for c = 0. It means that the 
symmetry of the ordered phase is different from D-h. As 
our molecules are highly anisotropic (donor site at one 
pole and acceptor site at another pole) it seems reasonable 
that the symmetry of the ordered phase is Cmv. It means 
that the molecules have both preferred axis and preferred 
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598 B. A. Veytsman 

orientation along this axis. As the order parameter for such 
phase changes sign if the space coordinates change signs, 
the free energy can depend only on even powers of the 
order parameter. Therefore the ordering transition must be 
of the second order. 

Let us seek the orientation distribution function in the 
form 

(19) 
C 

exp (c cos 0). 
'(') = 471 sinh c 

It is easy to find that 

C 
In - + c coth c - I )  (20) sinh c 

and 

c sinh 2c 
sinh2 c 

K =  K I P -  

The free energy as the function of the parameter c has a 
single minimum at some c*(KI).  At KI  5 2 c*(KI) = 0, and 
at K1> 2c*(K1) > 0 {see figure 1). Therefore we indeed 
deal with the second order phase transition. In the vicinity 
of the transition point we can expand the free energy with 
respect to small parameters c and IK, - 21 

(k - 2)2 (KI - 212 7c4 
(22)  -- 540 + ... . - ____ - 

36 36 

Minimizing t h i s  equation we see that the equilibrium value 
of c at IKl - 21 Q 1 is 

K l S  2 

and the corresponding free energy is 

K1- 2 43(K, - 2)2 
4 1008 

I k- 21n2 -___- + ..., Kr>2 .  

When KI goes through the value KI = 2, the second 
derivative (d2ffdK:) has a jump equal to - &nkT. It 
corresponds to a jump in the molar heat capacity equal to 
0.03R. Orientation properties are usually described by the 

set of order parameters pl= (Pl(cos 0)). The first two of 
then in the region IKI - 21 4 1 are 

KI 5 2 

f 
n k T  
- 

/ I 
/ 

/ 
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Figure 

C 

(cj 

(bj Ki = 2; (c) KI = 10. 
1. Free energy as a function of c for (n )  Kl = 1; 
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599 Order in fluids with hydrogen bonds 

KI 
(4 

(c) PZ(K1). 
Figure 2. Orientation ordering for (a) c*(K,); (b)  PI(&); 

and 

The values of c*, p1 and p2, computed in a wider region 

of KI, are presented on figure 2. 
The most interesting feature of this phase transition is 

its effect on the fraction of hydrogen bonded groups n. In 
the vicinity of the transition point we have 

We see that while the fraction of hydrogen bonded groups 
is continuous at the point of phase transition, its derivative 
is not (see figure 3). Such behaviour may be observed by 
IR spectroscopy [ 161. 

4. Conclusions 
In this paper we proposed an approach for a general 

theory of liquid crystalline ordering in the hydrogen 
bonded fluids. It is based on the coupling between the 
orientation order and the equilibrium constants of the 
hydrogen bonds formation. This approach was illustrated 
on a simple example of the nematic-isotropic transition 
caused by the anisotropy of hydrogen bonds. 

The results for our simple model seem to be interesting. 
There exists an isotropic liquid-nematic phase transition, 
and the value of the equilibrium constant at the transition 
point is not too large. The fraction of hydrogen bonds at 
the transition temperature turns out to be independent of 
the details of the molecular interaction and is universal for 
all molecules of spherical shape having two opposite (or 
complementary) functional groups. The phase transition 
in this system, unlike the classical rigid rods solution, is 
of the second order. The ordered state is ferroelectric, 
g(p) # g( - p). Such anisotropy is caused by the high 
anisotropy of the molecules. The ordering transition 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 r 
b i i j i s i i i 9 10 

KI 
Figure 3. Fraction of hydrogen bonded functional groups. 

Solid line represents actual values of u(K1) and the dashed 
line the analytical continuation of the function u(&) from 
the isotropic phase. Insert: the derivative [du(&)]/(d&). 
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600 Order in fluids with hydrogen bonds 

influences the system thermodynamics and the number of 
hydrogen bonds formed. 

It is interesting to note that the phase transition in this 
system occurs at v = 3. This fact has a simple intuitive 
meaning. The average length of an aggregate in this 
system is 1/( 1 - v) units. At v > + the solution has mostly 
monomers and dimers. The values v < + correspond to the 
situation when an average aggregate has more than 2 units 
thus ensuring a sort of many-particle interaction (I am 
grateful to the reviewer of Liquid Crystals whose comment 
stimulated my interest to this fact). 

We explored the simplest situation when all anisotropic 
interactions but hydrogen bonding are neglected. The 
separation of free energy equation (1) makes it possible to 
account for other contributions in a more realistic model. 
Such a model should depend on the details of the 
molecular structure (polarizability, dipole moments, etc. j .  
We will address these matters in the future works. It is 
prudent to say, however, that the main feature of the 
explored system, the sensitivity of the fraction of formed 
hydrogen bonds to the phase transition, will be imminent 
to the more complex systems. It makes the described 
phenomena especially interesting for 1R study. 

I am grateful to Paul Painter and Sanat Kumar (Penn 
State), and Nikolay Malomuzh and Sergey Kuzmin 
(Odessa University) for helpful discussions of the statisti- 
cal mechanics of associated liquids. This work was 
supported by NSF (Grant No. DMR-9017387). 
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